Blog
Updated 17 Nov 2021
It’s been a long time coming, but the medical industry is finally embracing the cloud and all the benefits that come with it. For hospitals, migrating to the cloud wasn’t as straightforward as first thought. Considering the highly confidential data they handle, the effectiveness of cloud security has come into question. Moreover, the complex nature of cloud migration tools such as GKE (Google Kubernetes Engine) may have caused further confusion, putting many off adopting this new technology due to misunderstanding and worry.
In terms of technological progression, healthcare is more often than not at the forefront. Consider nanotechnology or 4D ultrasounds, for example. On the other hand, development and investment in IT infrastructure usually falls behind other sectors. Cloud computing solutions are a prime example. The healthcare industry has famously been one of the last industries to take the leap. Until a couple of years ago, that is.
Medical organizations looking for a flexible yet secure solution for storing and accessing large collections of data are steadily shifting to cloud data migration.
While increasingly lower setup and support costs are now big attractions of cloud storage, medical institutions can also benefit from the versatility that cloud data migration can offer.
Community health management, value-based care, and an ever-growing mobile user base require a storage infrastructure that can scale easily without requiring cumbersome investments into time and capital.
To take advantage of the cloud, however, companies need to correctly plan for this data migration process. Creating an effective and efficient data migration roadmap involves deciding which datasets and applications need to be moved to the cloud and what tools are available to facilitate the migration process.
The cloud is far different than what IT leaders and executives are used to deploying in their legacy infrastructure environments. Medical organizations should begin with a solid understanding of the processes involved and skills required at all stages of the migration journey, including management and maintenance requirements.
These have always been the main objections put forward by healthcare organizations when things like EHRs (Electronic Health Records) are at stake. However, the success and safety of online banking, for example, has quashed privacy concerns about the online storage of confidential medical records. Today’s leading cloud providers, including Google and Amazon, employ highly advanced protection and security far beyond that used by typical hospitals to keep their client’s data secure.
The confidentiality and privacy of medical information are, obviously, of paramount concern here. To learn more about medical privacy and the cloud, read our recent blog post discussing the benefits of cloud computing and effective cloud security solutions here: https://sa.ostridelabs.com/medical-privacy-and-cloud-computing-security-solutions/
While there are strict rules relating to the use of the cloud for healthcare data, regulations preventing its use have slowly been relaxed. Today, there is an open market where healthcare providers can choose where and how they manage their data online.
Funding models continue to be an obstacle, with hospitals and organizations working on ways to more easily procure cloud technologies. In a lot of cases, an IT policy may mandate a strategy that looks to incorporate cloud technologies, but the procurement department will not approve such purchases. Until these barriers are defeated and the benefits of cloud migration can be easily communicated on a larger scale to entire organizations, hospitals’ pathways to the cloud will stay blocked.
Simply, data migration includes:
The migration process can be viewed as numerous iterative cycles where each application and its data is moved from its origin to its new cloud destination, one by one. To ensure a smooth transition, a tactic employed by many cloud solution providers is to use machine learning to find errors or misplaced data points when collecting data from multiple applications.
Similar automation can also assure compliance with corporate policies and security standards established by the CTO, CIO, or CISO for the company. The DevOps team can also include phase gates to make sure policies are obeyed throughout the data life cycle.
For compliance purposes, PHI/PII data has to be physically isolated from the rest of the operational data. With the appropriate application of data encryption and least privilege combined with physical separation of data per tenant in the case of multi-tenant systems, the chance of data being held at ransom can be reduced. This also significantly reduces the absolute damage in case of a breach.
Furthermore, an open API standard system enables a security team to view how interactions are taking place between data repositories and how APIs are interacting with various databases. To allow applications to interact while remaining separate and secure, the mechanism working the API system needs network isolation control and the enforcement of least privilege. This provides the ability to observe the interference between databases and analyze possible threats.
Lastly, encrypting all communications is important. No organization can expect consistent vigilance from those using internal or external communication channels. At some point, patients, employees, or providers may share sensitive information. Encryption ensures that this information can not be retrieved by a wrongdoer.
Cloud migration is complicated but necessary for healthcare organizations. Proper planning and consideration of workloads, applications, and the future of the industry, allow organizations to embrace the cloud for eventual data expansion and flexibility. These five key considerations can also be thought of as an effective roadmap to successful cloud migration.
While some medical organizations already have the internal technical expertise to successfully perform a cloud migration, the majority will have to procure the assistance of external partners. When selecting the right partner, it’s important to examine their past experience on similar projects, previous clients, and their readiness to address inquiries or concerns specific to your cloud migration.
Data migration should not be employed as a quick fix. While it may solve immediate problems, healthcare organizations should be making projections for at least five years in the future when making important decisions. For example, in the case of cloud migration, it is crucial to plan for future capacity requirements and forecast tech trends. Without considering long-term needs, healthcare providers will most likely have to engage in another expensive data migration in the next couple of years.
Not every cloud migration demands a total relocation of all applications and data available. In a few instances, some legacy systems and data might be left in their place or transferred to a different location from the other data assets due for cloud migration.
Because of this, taking a comprehensive inventory of all current data assets and determining whether or not to move them is necessary. When data has to be transferred, the selected destination must be identified and defined. Above everything, this will limit delays and confusion when the migration reaches a critical stage and changes become more expensive and challenging to implement.
This ensures that data stays consistent, accurate, and reliable while migrating between systems. Sufficient error checking and validation methods must be in place to make sure that data is not changed or duplicated during the transfer.
The majority of the work needed to maintain data integrity should be done at the pre-planning stage. It shouldn’t be assumed that there will be a direct relationship between fields and data types. For example, mistakes could occur that would leave patient records inaccessible or incomplete. Implementing a manual check to monitor the success of an electronic migration process is essential.
Utilize using a cloud-based storage solution to augment your on-premises storage, instead of relying on one or the other. The majority of cloud service providers now offer better overall security and access restrictions than the best equipped internal IT teams can provide. Cloud infrastructure allows healthcare organizations to swiftly acquire more storage and computing resources as needed.
While regulatory compliance rules require healthcare providers to have in-house servers for the storage of sensitive data, most patient health records can actually be stored and managed in the cloud. Using a hybrid system that incorporates both internal servers and a cloud infrastructure may prove to be the best solution for large healthcare providers.
Migrating data and applications to the Cloud is not just a new, interesting initiative. There is actually a pressing urgency for healthcare organizations to move their data to the cloud and to make their systems cloud-native. In today’s technological environment, however, these providers must take a broader view to ensure lasting security and efficiency.
Healthcare organizations will gain plenty of advantages from the cloud once their data is successfully migrated. It will make their data more readily available while lowering operational costs and maintaining privacy. However, it’s important to carry out comprehensive planning before undertaking a cloud migration.
Our newsletter (you’ll love it):